Exploring The Scale of the Universe

	Distance from Sun or Earth	Diameter
The Sun (Sol)		$696,340 \mathrm{~km}$
Earth	$151,260,000 \mathrm{~km}(1 \mathrm{AU})$	$6,371 \mathrm{~km}$
The Moon	$384,400 \mathrm{~km}$ (from Earth)	$1,737 \mathrm{~km}$
Jupiter	5.45 AU	$71,492 \mathrm{~km}$
Neptune	30.33 AU	$24,764 \mathrm{~km}$
Alpha Centauri A (nearest visible star)	4.357 Ly	$847,794 \mathrm{~km}$
Sagittarius A* (nearest black hole)	$26,000 \mathrm{Ly}$	$13.4 \times 10^{9} \mathrm{~km}$
The Milky Way	$2.5 \times 10^{6} \mathrm{Ly}$	$87,400 \mathrm{Ly}$
Andromeda Galaxy (nearest galaxy)	$13.463 \times 10^{9} \mathrm{Ly}$	$260,000 \mathrm{Ly}$
HD1 Galaxy (most distant galaxy detected)	$?$	

1 Ly (Light Years) $=63241.1$ AU (Astronomical Unit) $=9,460,733,897,365 \mathrm{~km}$ (9.4 trillion)

Visualising the scales

Find a range of spherical (or spheroidal) objects of very different sizes.

Object	Diameter
Gym Ball	$\sim 0.75 \mathrm{~m}$
Soccer Ball	0.22 m
Tennis Ball	0.068 m
Small Marble	13 mm
Ball Bearings	$0.250-300 \mathrm{~mm}$
Grain of Sand	0.06 mm to 2.0 mm

Using the largest spheroid object found, use this to represent our Sun.
Apply this scale to find an object to represent the Earth, The Moon and Jupiter. Now calculate the relative distances between these objects.

Find a large open space and pace out the distances for these objects. Get someone to hold these objects at these distances.

Can you add Neptune to the demonstration?
Now, calculate relative distances for other astronomical objects. Try using coins as representations of concepts like the orbit of Neptune (to represent the Solar System).

